Skip to content

Technical Architecture - Template Generator

Deep dive into the sophisticated system design that powers AI-driven form generation

🏗️ System Overview

Template Generator employs a modern, scalable architecture that seamlessly integrates AI processing with real-time form generation. The system is designed for high performance, maintainability, and extensibility.

mermaid
graph TB
    A[React Frontend] --> B[Express API Gateway]
    B --> C[AI Processing Service]
    B --> D[Schema Management Service]
    B --> E[Template Service]
    C --> F[OpenAI API]
    D --> G[PostgreSQL Database]
    E --> G
    B --> H[File Upload Service]
    H --> I[File Storage]

🎯 Architecture Principles

Microservices Design

  • Separation of Concerns: Each service handles a specific domain
  • Scalable Components: Independent scaling based on load patterns
  • Fault Isolation: Service failures don't cascade across the system

Event-Driven Processing

  • Async Operations: Non-blocking AI processing for better UX
  • Real-Time Updates: WebSocket connections for live form previews
  • Queue Management: Background processing for heavy operations

🔧 Frontend Architecture

React Component Hierarchy

typescript
// Component Architecture
App
├── Layout
│   ├── Header
│   ├── Navigation
│   └── Footer
├── Pages
│   ├── UploadPage
│   ├── SchemaEditor
│   ├── FormPreview
│   └── TemplateLibrary
└── Shared
    ├── FileUploader
    ├── SchemaBuilder
    ├── FormRenderer
    └── LoadingStates

State Management Strategy

typescript
// Redux Store Structure
interface AppState {
  upload: {
    file: File | null;
    progress: number;
    status: 'idle' | 'uploading' | 'processing' | 'complete';
  };
  schema: {
    generated: JSONSchema7;
    modified: JSONSchema7;
    validation: ValidationResult[];
  };
  forms: {
    preview: FormData;
    templates: Template[];
    activeTemplate: string | null;
  };
  ui: {
    activeTab: string;
    notifications: Notification[];
    loading: LoadingState;
  };
}

Component Design Patterns

typescript
// Custom Hooks for Business Logic
const useSchemaGeneration = () => {
  const [schema, setSchema] = useState<JSONSchema7>();
  const [loading, setLoading] = useState(false);
  const [error, setError] = useState<string | null>(null);

  const generateSchema = useCallback(async (file: File) => {
    setLoading(true);
    try {
      const result = await apiClient.generateSchema(file);
      setSchema(result.schema);
    } catch (err) {
      setError(err.message);
    } finally {
      setLoading(false);
    }
  }, []);

  return { schema, loading, error, generateSchema };
};

// Higher-Order Components for Common Functionality
const withErrorBoundary = <P extends object>(
  Component: React.ComponentType<P>
) => {
  return (props: P) => (
    <ErrorBoundary>
      <Component {...props} />
    </ErrorBoundary>
  );
};

⚙️ Backend Architecture

Service Layer Design

typescript
// Service Architecture
interface ISchemaService {
  generateFromExcel(file: Buffer): Promise<JSONSchema7>;
  validateSchema(schema: JSONSchema7): Promise<ValidationResult>;
  saveSchema(schema: JSONSchema7, metadata: SchemaMetadata): Promise<string>;
}

interface ITemplateService {
  createTemplate(name: string, schema: JSONSchema7): Promise<Template>;
  getTemplates(userId: string): Promise<Template[]>;
  updateTemplate(id: string, updates: Partial<Template>): Promise<Template>;
}

interface IAIService {
  analyzeExcelStructure(data: ExcelData): Promise<FieldAnalysis[]>;
  generateFieldTypes(columns: string[]): Promise<TypeMapping>;
  optimizeSchema(schema: JSONSchema7): Promise<JSONSchema7>;
}

Database Schema Design

sql
-- Core Tables
CREATE TABLE templates (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(255) NOT NULL,
    description TEXT,
    schema JSONB NOT NULL,
    metadata JSONB,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW(),
    created_by VARCHAR(255),
    version INTEGER DEFAULT 1
);

CREATE TABLE schemas (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    template_id UUID REFERENCES templates(id),
    content JSONB NOT NULL,
    validation_rules JSONB,
    ui_schema JSONB,
    created_at TIMESTAMP DEFAULT NOW()
);

CREATE TABLE form_submissions (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    template_id UUID REFERENCES templates(id),
    form_data JSONB NOT NULL,
    submitted_at TIMESTAMP DEFAULT NOW(),
    submitted_by VARCHAR(255)
);

-- Indexes for Performance
CREATE INDEX idx_templates_created_by ON templates(created_by);
CREATE INDEX idx_templates_updated_at ON templates(updated_at);
CREATE INDEX idx_schemas_template_id ON schemas(template_id);
CREATE GIN INDEX idx_templates_schema ON templates USING gin(schema);

API Design Patterns

typescript
// RESTful API Structure
const apiRoutes = {
  // File Operations
  'POST /api/v1/upload': uploadFile,
  'GET /api/v1/files/:id': getFile,
  
  // Schema Management
  'POST /api/v1/schemas/generate': generateSchema,
  'PUT /api/v1/schemas/:id': updateSchema,
  'GET /api/v1/schemas/:id/validate': validateSchema,
  
  // Template Operations
  'GET /api/v1/templates': getTemplates,
  'POST /api/v1/templates': createTemplate,
  'PUT /api/v1/templates/:id': updateTemplate,
  'DELETE /api/v1/templates/:id': deleteTemplate,
  
  // Form Operations
  'POST /api/v1/forms/preview': previewForm,
  'POST /api/v1/forms/submit': submitForm,
  'GET /api/v1/forms/:templateId/submissions': getSubmissions
};

🤖 AI Integration Architecture

OpenAI Processing Pipeline

typescript
// AI Processing Flow
class AIProcessor {
  async processExcelFile(file: Buffer): Promise<SchemaResult> {
    // 1. Parse Excel data
    const excelData = await this.parseExcel(file);
    
    // 2. Analyze structure with AI
    const analysis = await this.analyzeWithOpenAI(excelData);
    
    // 3. Generate JSON schema
    const schema = await this.generateSchema(analysis);
    
    // 4. Optimize and validate
    const optimizedSchema = await this.optimizeSchema(schema);
    
    return {
      schema: optimizedSchema,
      confidence: analysis.confidence,
      suggestions: analysis.suggestions
    };
  }

  private async analyzeWithOpenAI(data: ExcelData): Promise<Analysis> {
    const prompt = this.buildAnalysisPrompt(data);
    const response = await openai.chat.completions.create({
      model: "gpt-4",
      messages: [
        {
          role: "system",
          content: "You are an expert data analyst..."
        },
        {
          role: "user",
          content: prompt
        }
      ],
      temperature: 0.1,
      max_tokens: 2000
    });
    
    return this.parseAIResponse(response);
  }
}

Intelligent Field Detection

typescript
// AI-Powered Field Analysis
interface FieldAnalysis {
  name: string;
  type: 'string' | 'number' | 'boolean' | 'date' | 'email' | 'phone';
  required: boolean;
  validation: ValidationRule[];
  description: string;
  examples: string[];
  confidence: number;
}

class FieldAnalyzer {
  async analyzeField(
    columnName: string, 
    sampleData: string[]
  ): Promise<FieldAnalysis> {
    const patterns = this.detectPatterns(sampleData);
    const aiInsights = await this.getAIInsights(columnName, sampleData);
    
    return {
      name: this.normalizeFieldName(columnName),
      type: this.determineType(patterns, aiInsights),
      required: this.assessRequirement(sampleData),
      validation: this.generateValidation(patterns),
      description: aiInsights.description,
      examples: sampleData.slice(0, 3),
      confidence: aiInsights.confidence
    };
  }
}

🔄 Data Flow Architecture

Request Processing Flow

typescript
// End-to-End Data Flow
const processUploadRequest = async (req: Request, res: Response) => {
  try {
    // 1. File Upload & Validation
    const file = await fileService.validateAndStore(req.file);
    
    // 2. Queue AI Processing
    const jobId = await queueService.enqueue('schema-generation', {
      fileId: file.id,
      userId: req.user.id
    });
    
    // 3. Return Job ID for tracking
    res.json({ jobId, status: 'processing' });
    
    // 4. Background Processing
    await processSchemaGeneration(jobId, file);
    
  } catch (error) {
    await errorHandler.handle(error, req, res);
  }
};

// Background Processing
const processSchemaGeneration = async (jobId: string, file: File) => {
  try {
    // AI Processing
    const schema = await aiService.generateSchema(file);
    
    // Store Results
    await schemaService.save(schema, { jobId, fileId: file.id });
    
    // Notify Client
    await websocketService.emit(jobId, {
      type: 'schema-complete',
      schema,
      timestamp: new Date()
    });
    
  } catch (error) {
    await websocketService.emit(jobId, {
      type: 'schema-error',
      error: error.message,
      timestamp: new Date()
    });
  }
};

🚀 Performance Optimizations

Frontend Optimizations

typescript
// Code Splitting & Lazy Loading
const SchemaEditor = lazy(() => import('./components/SchemaEditor'));
const FormPreview = lazy(() => import('./components/FormPreview'));

// Memoization for Expensive Operations
const MemoizedFormRenderer = React.memo(FormRenderer, (prev, next) => {
  return JSON.stringify(prev.schema) === JSON.stringify(next.schema);
});

// Virtual Scrolling for Large Forms
const VirtualizedFormFields = ({ fields }: { fields: FormField[] }) => {
  return (
    <FixedSizeList
      height={600}
      itemCount={fields.length}
      itemSize={80}
      itemData={fields}
    >
      {FieldRenderer}
    </FixedSizeList>
  );
};

Backend Optimizations

typescript
// Database Query Optimization
class TemplateRepository {
  async getTemplatesWithPagination(
    userId: string, 
    page: number, 
    limit: number
  ): Promise<PaginatedResult<Template>> {
    const query = `
      SELECT t.*, COUNT(*) OVER() as total_count
      FROM templates t
      WHERE t.created_by = $1
      ORDER BY t.updated_at DESC
      LIMIT $2 OFFSET $3
    `;
    
    const result = await this.db.query(query, [
      userId, 
      limit, 
      (page - 1) * limit
    ]);
    
    return {
      data: result.rows,
      total: result.rows[0]?.total_count || 0,
      page,
      limit
    };
  }
}

// Caching Strategy
class CacheService {
  async getOrSet<T>(
    key: string, 
    fetcher: () => Promise<T>, 
    ttl: number = 3600
  ): Promise<T> {
    const cached = await this.redis.get(key);
    if (cached) {
      return JSON.parse(cached);
    }
    
    const data = await fetcher();
    await this.redis.setex(key, ttl, JSON.stringify(data));
    return data;
  }
}

🔒 Security Architecture

Authentication & Authorization

typescript
// JWT-based Authentication
interface AuthMiddleware {
  authenticate: (req: Request, res: Response, next: NextFunction) => void;
  authorize: (roles: string[]) => Middleware;
}

// Rate Limiting
const rateLimiter = rateLimit({
  windowMs: 15 * 60 * 1000, // 15 minutes
  max: 100, // limit each IP to 100 requests per windowMs
  message: 'Too many requests from this IP'
});

// Input Validation
const validateSchema = [
  body('name').isLength({ min: 1, max: 255 }).trim().escape(),
  body('schema').isJSON().custom(validateJSONSchema),
  body('description').optional().isLength({ max: 1000 }).trim().escape()
];

This architecture ensures Template Generator is not just functional, but scalable, maintainable, and ready for enterprise deployment. Every component is designed with performance, security, and user experience in mind.


System designed and implemented by Mohanpathi - March 2025

Built with precision engineering and innovative solutions.